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Background 
 
Multiple Sclerosis 
Multiple sclerosis (MS) is a chronic disease of the CNS that begins most commonly in young adults, 
and is pathologically characterised by multiple areas of white matter inflammation, demyelination, and 
gliosis. The clinical course of MS varies from a benign course to a rapidly progressive and disabling 
disorder. Most patients, however, begin with a relapsing-remitting illness, which is caused by the 
occurrence of multiple lesions that are disseminated in time as well as in space. However, after 10-20 
years or longer, most patients become disabled. MRI is extremely useful in MS, since it can be used to 
support the diagnosis of MS and to monitor disease evolution in both natural history studies and 
treatment trials.  
 
New MRI techniques 
Although conventional MRI is the most sensitive paraclinical test in the diagnosis of MS, its specificity 
is limited. Any pathology from edema and mild demyelination, through to completely necrotic lesions, 
may show the same abnormal signal. This lack of histopathological specificity accounts, in part, for the 
modest correlation between clinical disability and MRI parameters, often referred to as the “clinical 
radiological paradox” [1]. New MRI techniques have been recently developed in order to overcome 
this limitation, and provide additional in vivo information on the pathological substrates of MS. They 
showed that MS pathology is not restricted to the demyelinating lesions, but also involves the brain 
outside the lesions, the so-called normal-appearing white matter (NAWM) and grey matter (NAGM), 
confirming post-mortem data. 
 
Diffusion tensor imaging in MS 
Diffusion-weighted imaging is a new MRI technique which has been widely applied in MS to improve 
our understanding of the disease. In particular, diffusion tensor imaging (DTI) [2], which best describes 
the diffusion properties of a living tissue, has been employed to investigate the structural damage 
occurring in the MS brain. From the DT several indices can be derived, such as fractional anisotropy 
(FA), which quantifies the preferential direction of diffusion within a voxel, and mean diffusivity 
(MD), which measures the magnitude of water diffusion without regard to its directionality. In the last 
few years, the growing number of DT studies investigating diffusion abnormalities in MS have 
consistently reported that diffusion changes are present not only in the demyelinating lesions, but also 
in the normal-appearing tissue [3-6]. The fact that DTI can detect pathological changes which are not 
visible on conventional MRI has important clinical relevance because of the potential of pathology in 
NAWM and NAGM to contribute to disability in patients with MS. 
 
Diffusion-based tractography 
Since DTI can detect, at the macroscopic scale of a voxel, the extent of directional bias of diffusion 
occurring at the microscopic level, it can distinguish between regions where fibres are highly aligned in 
the voxel from those where fibres are less coherent. However, it provides no explicit information about 
the connection between adjacent voxels. A number of different tractography methods, which use the 
information provided by the diffusion tensor concerning the orientation of fibres within a voxel, have 



recently been developed in order to determine the pathways of cerebral connections in vivo [7]. The 
possibility of a non-invasive assessment of white matter pathways in MS may increase our 
understanding of the disease. However, the employment of tractography in MS is still preliminary, and 
only a few studies have so far examined patients with MS using tractography algorithms [8-11]. 
 
This presentation will focus first on methodological aspects, clinical applications and limitations of 
DTI in MS. Secondly, a few diffusion-based tractography studies will be summarised. Finally, the most 
common limitations of tractography studies in MS will be discussed. 
 
Methodological aspects 
 
DTI studies in MS have been performed using region of interest and histogram analyses. A voxel-based 
approach represents a further option (for more details, see [12]) 
 
Regions of interest analysis 
The majority of DTI papers, especially the less recent, employed this methodology, which consists of 
drawing regions of interest on specific areas of the brain, using anatomical knowledge, and then 
quantifying the diffusion parameters, such as FA or MD, within those areas. Regions can be drawn on 
the non-diffusion weighted b0 images, and then automatically transferred to the DTI maps. Otherwise, 
they can be outlined on high resolution images, which have to be co-registered to the diffusion maps, 
and then transferred to the diffusion maps. The main advantages of this approach are that the regions 
can be chosen on the basis of a priori hypothesis, and can be located on the NAWM ensuring that 
lesions are avoided, or vice versa. On the other hand, using this approach, it is possible to miss 
significant abnormalities in regions that are not selected. Furthermore, it is highly dependent on the 
observer and on the anatomical cues used in positioning the regions. The registration process and its 
related methodological issues must be carefully considered when images from different modalities are 
co-registered to allow the transfer of regions. It is also necessary to reposition the regions of interest in 
exactly the same location in longitudinal studies.  
 
Histogram analysis 
This approach has been widely used in MS to investigate differences between patients and controls in 
the NAWM and NAGM and to explore correlations between MRI parameters and clinical disability. 
The histogram of diffusion parameters is a frequency distribution showing the number of voxels with a 
particular range of parameter values. From the histogram of each DTI parameter, the following 
variables can be derived: the mean; the peak height (the proportion of voxels at modal value); the peak 
location (the location of the modal value). These variables are then used in patients’ studies. The 
histogram analysis allows the characterisation of the diffusion parameters in the whole brain in a fully 
automated way. Histogram of white matter or grey matter only can also be obtained. In contrast to the 
region of interest approach, it does not retain any information about location of abnormalities, and 
avoids any pre-judgment about which parts of the brain is investigated. However, it has been shown 
that the histogram derived metrics are sensitive to partial volume effect from brain atrophy, and 
therefore correction for brain volume differences are needed in patients’ studies.  
 
Voxel-based analysis 
So far this technique has not been applied to MS. It consists of performing an analysis on a voxel-by-
voxel basis [13] in order to localise changes related to tissue abnormalities (“VBM-style” analysis). 
This approach allows us to combine the ability of regions of interest to be spatially specific with the 
ability of the histograms to be unbiased. In simple terms, it involves co-registration of the diffusion 
maps, such as FA maps, into a standard space, and then making comparisons of diffusion parameter 



values between groups or testing for correlations with an external variable, such as disability or age. 
Advantages of this approach are that all locations across the brain are tested in an unbiased way, and 
that location of significant group differences or correlations is automatically shown. Although it 
presents few problems, such as those related to the registration algorithms and spatial smoothing, it is a 
powerful technique, and a method that aims to solve these issues has recently been implemented as part 
of FSL (www.fmrib.ox.ac.uk), and it called Tract-Based Spatial Statistics (TBSS). The application of 
such method to MS may be further complicated by the presence of MS lesions around the ventricles 
that, for example, may influence the accuracy of the spatial normalization process.   
 
Clinical applications 
 
Role of DTI in the diagnosis of MS 
DTI is not routinely used for the diagnosis or differential diagnosis of MS. Although acute MS lesions 
have been reported to show increased diffusivity values [14], a reduction of ADC, which is commonly 
seen in patients with stroke, has also been reported [15]. 
 
Role of DTI in assessing the effect of treatments 
DTI appears to be sensitive to disease-related changes occurring in MS brain over time [16-18]. 
Therefore, it has the potential to be used as a treatment outcome measure [3,19]. However, it has not 
been employed so far in treatment trials mainly because of the lack of standardization of measurements 
for multi-centre studies. Its ability to detect changes beyond the lesions and its sensitivity to structural 
damage, combined with the dissemination of high resolution scans and hardware improvements, are 
encouraging its growing use at multiple clinical sites.  
 
Role of DTI in improving our understanding of the disease 
DTI is commonly used in MS to provide insights into the mechanisms of damage in the brain, spinal 
cord and optic nerve. Here we briefly summarise the main findings: 
 
Brain
1) MS lesions 
DTI studies in MS have demonstrated that FA is reduced and MD is increased in MS lesions compared 
to NAWM and normal brain. Although the highest degree of diffusion abnormalities have been found 
in T1-hypointense lesions [17,20-23], which are affected by the most severe tissue disruption [24], 
there is no agreement on the diffusion changes occurring in the enhancing and non-enhancing lesions 
[20].  
 
2) Normal-appearing white matter (NAWM) 
Similar diffusion abnormalities (i.e. reduced FA and increased MD) have been detected in the NAWM 
of patients with MS compared to the white matter of healthy subjects [21,22,25,26]. Furthermore, 
diffusion indices in the NAWM have been reported to correlate moderately with clinical disability 
[23,27-30]. For example, both FA and MD in the cerebral peduncles inversely correlated with EDSS 
and pyramidal functional score, albeit modestly [27]. Overall, the clinical correlations reported so far 
suggest that the pathological damage detected on DTI in NAWM regions is a significant factor 
contributing to disability and progression in MS. 
 
3) Normal-appearing grey matter (NAGM) 
Diffusion studies using histogram analysis have described an increased MD in NAGM, including 
cortical and deep regions, in patients with MS [26,29]. Furthermore, there is evidence that the diffuse 
damage in the NAGM contributes to clinical disability [29,30]. For example, diffusion histograms 
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metrics derived from NAGM have been shown to correlate with the severity of language, attention and 
memory deficits in patients with RR MS [30]. However, conflicting results have been reported on the 
presence of diffusion abnormalities in the basal ganglia [27,31].  
 
Spinal cord and optic nerve 
The spinal cord and the optic nerve have been less studied than the brain, mainly because of technical 
limitations (i.e. small size, motion artifacts, CSF pulsations). However, encouraging results have been 
obtained in pilot studies that have applied DTI to the cervical spinal cord in patients with MS [32,33] 
and diffusion weighted imaging to the optic nerve in patients with optic neuritis [34,35], suggesting 
that diffusion abnormalities are diffuse to these sites and contribute to the development of irreversible 
deficits. 
 
Limitations of DTI 
 
The main limitation of DTI studies in MS is that the exact pathological substrates of in vivo diffusion 
changes are not known. Therefore, studies investigating radiological and pathological parameters are 
needed to understand the underlying tissue abnormalities.  
 
 
Diffusion-based tractography in MS  
 
Diffusion-based tractography allows us to extend the investigation of diffusion changes from a region 
of interest of a few voxels to the whole white matter tract [8]. It has also been reported to improve 
correlations with disability by matching selected tracts with specific clinical scoring systems [10,11]. In 
a recent study we used tractography to reconstruct the optic radiations of patients with optic neuritis, 
and found reduced connectivity value in both tracts compared with controls, suggesting mechanisms of 
trans-synaptic degeneration [9]. Overall, these results show that tractography has the potential to be 
used not only as a tool to segment white matter tracts and compute FA values, but also to obtain 
quantitative measures of anatomical connectivity in the most clinically eloquent white matter pathways. 
 
Limitations of tractography  
 
The main limitations of tractography studies in MS are those that are generally found in all 
tractography studies. For example, they are due to the low resolution of DTI and to the inhomogeneity 
of white matter structures. These factors determine that DTI cannot adequately reflect the case of a 
voxel containing more than one population of axonal bundles with different orientations. Moreover, the 
DTI acquisitions contain noise, and, consequently, the calculated vector direction may deviate from the 
real fibre orientation. These limitations may induce not only tracking errors [36,37], but also 
reconstruction of adjacent and unrelated white matter tracts [38]. Furthermore, MS brains contain 
multiple lesions, and the effect of lesions on tracking is still unclear, although it is possible that, at least 
some of the tractography algorithms, are able to track through the lesions [9]. 
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